

This reference covers core language features
of Chronosphere logging. See the
documentation for more information.

transformation Syntax
Transformations reshape your data based on aggregations
and support different output shapes. ALL ARGS OPTIONAL.

make-series Formats data for a time-series

summarize Formats to a table (also bar/pie chart, etc_

top-nested Formats to a table for hierarchical grouping

Math on Aggregations
f | transformation aggregation1 +/*-
aggregation2 ... by G
Aggregations can be added, divided, multiplied, or
subtracted where valid. Most useful for alerting with If
functions, where you might divide to create a ratio.

Mental model
Data flows through logging as a single table, which can
be filtered, transformed, aggregated, and post
processed. All steps are optional and independent, but
aggregations must be used with a transformation.
All steps are separated by a pipe | to indicate data flow.

make-series Syntax
f | make-series aggregations step size by F
aggregation aggregation(s) to use. Default count()
size Prom. format time duration (e.g., 1h)
F Fields to group by (e.g., service, severity)
Supports series visualization only.

Aggregation Naming
f | transformation name_1 = aggregation1,
name_2 = aggregation1/aggregation2
Aggregations can be named to improve query and table
readability. Charts and tables will use this name.

Query structure
filter | transformation aggregations | post
Steps are separated by a pipe. Every query can be read
as, starting with all the logs: apply my filterExpression,
then aggregate and transform to the desired shape.

summarize Syntax
f | summarize aggregations by F
aggregation aggregation(s) to use. Default count()
F Fields to group by (e.g., service, severity)
Supports table, bar chart, and stat.

substring Function
substring(field, start_idx, LENGTH)
field Field to take the substring of.
start_idx Start index of the substring.
length Optional. If unspecified, to the end.
Substring is a special function that can be used
anywhere a field can be used. For example in the filter to
match a substring VALUE, in If functions, or in the by
clause to manipulate grouping (e.g., to remove a prefix).

filter Syntax
FIELD =|!=|=~|!~|: VALUE AND|OR FIELD
=|!=|=~|!~|: VALUE AND|OR "full-text
search value" AND| OR NOT KEY EXISTS
this is a comment

aggregation Syntax
f | transformation count()
Counts number of rows from f.
f | transformation countIf(filter)
Counts rows where filter predicate is true.
f | transformation avg(field)
Produces an average over numerical field.
f | transformation avgIf(field, filter)
More functions like avg: dcount, sum, avg, min, max
All have If functions, allowing filter syntax.
f | transformation arg_max(fieldM, field)
Returns value of field for row with maximum fieldM.
f | transformation percentile(field, number)
All stats functions ignore non-numerical values.
field The field to run aggregation over. e.g., latency
filter Filter to apply (e.g., user.id: "myid")
number Percentile whose value to return

Regular Expression

=~ Matches regex
!~ Does not match regex
: Contains literal string only
Logging uses RE2 regular expression syntax.

post Processing Syntax
Post processing functions apply after all previous
(optional) steps, and do not change the shape of the data
after transformation. They can:
limit Limits the number of rows

sort Sorts by selected fields

project Selects columns to include and add/compute

f | t a | limit [limit]
f | t a | sort by field1 asc|desc, field2...
f | t a | project field1, field2

Math and Aliasing on Project (Coming soon)
f | t a | project field1, ratio = field1/f2

Filter Notes
All values must be quoted, except boolean.
Filter operators are case insensitive (and = AND). Where
no operator is specified between clauses, AND is
assumed. See docs for array access syntax.

filter Example
find test generated errors
severity = "Error" service = "payment"
and ("testUsr" or admin = true)

Multiple Aggregation (Coming Soon)
f | t aggregation1, aggregation2 ... by G
A query can have a single transformation that
produces multiple aggregations and columns.

https://docs.chronosphere.io/investigate/logs/query-logs
https://prometheus.io/docs/prometheus/latest/querying/basics/#float-literals-and-time-durations
https://github.com/google/re2/wiki/syntax

This page contains queries using the following fields and functions defined above. Their types are below.

service
string

severity
string

message
string

request.latency
float

k8s.deployment.id
string

TraceId
string

isAdmin
boolean

isAdmin = true and message: "test" Simple filtering to find admin logs containing "test" in message

isAdmin = true and message: "test"
| make-series by service, severity

Creating a time series grouping by service and severity
Note that make-series default aggregation is count().

isAdmin = true and message: "test"
| make-series avg(request.latency) by service, severity

Creating a time series grouping by error and severity with average
latencies

isAdmin = true and severity = "ERROR" and TraceId EXISTS
| project service, severity, TraceId, request.latency

Finding admin errors with traces and projecting the latency

severity = "ERROR"
| summarize percentile(latency, 95) by service

Creating a table of 95th percentile error latencies across services

severity = "ERROR"
| summarize arg_max(latency) by service

Find the last (most recent) error latency per service
arg_max default first parameter is _timestamp, allowing it to be used like a
“last” function. It always reduces to a single value, like max.

service = "auth" isAdmin = false
| make-series countIf(severity = "ERROR") / count() step 5m

Creating an error rate/ratio for a specific service

summarize max(request.latency)
by substring(k8s.deployment.id, 11, 36)

Manipulating strings using substring to find maximum
deployment latency across environments
For this example, assume k8s.deployment.id contains values following the
format k8.[36-chararacter-id].[prod, dev, test]. We want to create one row for
every guid, collapsing values from prod, dev, test into that row using substring.

